profile

Опубликовано 5 лет назад по предмету Геометрия от Fatihova1996

ПОМОГИТЕ ПОЖАЛУЙСТА! через середину к медианы вм треугольника авс и вершину а проведена прямая пересекающая сторону вс в точке р. найдите отношение площади треугольника вкр и площади треугольника амк

  1. Ответ
    Ответ дан cos20093

    Через вершину В проводится прямая II АС. АР продолжается за точку Р до пересечения с этой прямой в точке Е. 

    Я дублирую свое же решение http://znanija.com/task/2316435

    Пусть ВЕ II AC, и точка Е лежит на продолжении АР.

    Треугольники ЕВК и АКМ подобны (у них углы равны), поэтому ЕВ/АМ = ВК/КМ; в даном случае ВК/КМ = 1, и ЕВ = АМ; (то есть эти треугольники просто равны). 

    Отсюда ЕВ = АС/2; (ВМ - медиана)

    Треугольники ЕВР и АСР тоже подобны по тому же признаку, поэтому ВР/СР = ЕВ/АС = 1/2;

    Итак, ВР = ВС/3; и, соответственно, площадь треугольника АСР

    Sabp = S/3; (S - площадь треугольника АВС, у тр-ка АВС и тр-ка АРВ общая высота, поэтому площади относятся, как стороны)).

    Поскольку площадь треугольника ВАМ равна половине площади АВС, а площадь АКМ равна половине АВМ (прием тот же - общая высота, и т.д.), то 

    Sakm = S/4;

    Точно так же и Sakb = S/4;

    Таким образом, площадь треугольника BPK равна

    Sbpk = Sapb - Sakb = S*(1/3 - 1/4) = S/12;

    Sbpk/Sakm = (1/12)/(1/4) = 1/3;

    Ответ 1/3;

Войдите или зарегистрируйтесь, чтобы добавить ответ или свой вопрос на сайт


Другие вопросы
Хаааа
Математика - 4 недели назад
Хаааа
Математика - 4 недели назад